UNIVERSITYOFMUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under

FACULTY OF TECHNOLOGY

Electronics Engineering

Second Year with Effect from AY 2017-18

As per **Choice Based Credit and Grading System** With effect from the AY 2016–17

Course	Course Name		eaching Sche Contact Hou		Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELX301	Applied Mathematics III	04		01@	04		01	05	
ELX302	Electronic Devices and Circuits I	04			04			04	
ELX303	Digital Circuit Design	04			04			04	
ELX304	Electrical Network Analysis and Synthesis	04			04			04	
ELX305	Electronics Instruments and Measurement	04			04			04	
ELXL301	Electronic Devices and Circuits I Laboratory		02			01		01	
ELXL302	Digital Circuit Design Laboratory		02			01		01	
ELXL303	Electrical Network and Measurement Laboratory		02			01		01	
ELXL304	Object Oriented Programming Methodology Laboratory		02+02#			02		02	
	Total	20	10	01	20	05	01	26	

S.E. (Electronics Engineering) – Semester III

@1 hour tutorial classwise

#02 hours classwise and 02 hours batchwise

				Exar	nination S	cheme – Seme	ster III		
				Theo					
Course	Course Name	Inter	nal Asse	essment	End	Exam	Term	Oral	
Code	Course Manie	(IA)			Sem	Duration	Work	/Prac	Total
		Test	Test	AVG.	Exam	(Hours)			
		Ι	II		Marks				
ELX301	Applied Mathematics III	20	20	20	80	03	25		125
ELX302	Electronic Devices and Circuits I	20	20	20	80	03			100
ELX303	Digital Circuit Design	20	20	20	80	03			100
ELX304	Electrical Network Analysis and	20	20	20	80	03			100
	Synthesis		20	20	80	03			100
ELX305	Electronic Instruments and	20	20	20	80	03			100
	Measurements	20	20	20	80	03			100
ELXL301	Electronic Devices and Circuits I						25	25	50
	Laboratory						25	23	50
ELXL302	Digital Circuit Design Laboratory						25	25	50
ELXL303	Electrical Network and						25		25
	Measurement Laboratory						23		25
ELXL304	Object Oriented Programming						25	25	50
	Methodology Laboratory						23	23	50
	Total	100	100	100	400	15	125	75	700

Course	Course Name		eaching Sche Contact Hou		Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELX301	Applied Mathematics III	04		01@	04		01	05	
ELX302	Electronic Devices and Circuits I	04			04			04	
ELX303	Digital Circuit Design	04			04			04	
ELX304	Electrical Network Analysis and Synthesis	04			04			04	
ELX305	Electronic Instruments and Measurements	04			04			04	
ELXL301	Electronic Devices and Circuits I Laboratory		02			01		01	
ELXL302	Digital Circuit Design Laboratory		02			01		01	
ELXL303	Electrical Network and Measurement Laboratory		02			01		01	
ELXL304	Object Oriented Programming Methodology Laboratory		02+02#			01		02	
	Total	20	08	02	20	04	01	26	

S.E. (Electronics Engineering) – Semester III

@1 hour tutorial classwise

#02 hours classwise and 02hours batchwise

				Exan	nination So	cheme – Seme	ster III		
				Theo					
Course	Course Name	Internal Assessment			End	Exam	Term	Oral	
Code	Course Maine		(IA)		Sem	Duration	Work	/Prac	Total
		Test	Test	AVG.	Exam	(Hours)			
		Ι	II		Marks				
ELX301	Applied Mathematics III	20	20	20	80	03	25		125
ELX302	Electronic Devices and Circuits I	20	20	20	80	03			100
ELX303	Digital Circuit Design	20	20	20	80	03			100
ELX304	Electrical Network Analysis and Synthesis	20	20	20	80	03			100
ELX305	Electronic Instruments and Measurements	20	20	20	80	03			100
ELXL301	Electronic Devices and Circuits I Laboratory						25	25	50
ELXL302	Digital Circuit Design Laboratory						25	25	50
ELXL303	Electrical Network and Measurement						25		50
	Laboratory						23		50
ELXL304	Object Oriented Programming						25	25	25
	Methodology Laboratory						23	23	25
	Total	100	100	100	400	15	125	75	700

Course	Course Name	Teaching Scheme			Credits Assigned				
Code	Course Maine	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELX301	Applied Mathematics III	04		01	04		01	05	

	Course Name		Examination Scheme									
Course Code		Theory Marks				Tom	Oral					
		Internal assessment			End Sem.	Term Work	&Practical	Total				
		Test1	Test 2	Avg.	Exam	WOLK	&F l'actical					
ELX301	Applied Mathematics III	20	20	20	80	25		125				

Prerequisite:

FEC 101: Applied Mathematics I FEC 201: Applied Mathematics II

Course objectives:

- 1. To build the strong foundation in Mathematics of students needed for the field of Electronics and Telecommunication Engineering
- 2. To provide students with mathematics fundamentals necessary to formulate, solve and analyses complex engineering problems.
- 3. To prepare student to apply reasoning informed by the contextual knowledge to engineering practice.
- 4. To prepare students to work as part of teams on multi-disciplinary projects.

Course outcomes:

- 1. Students will be able demonstrate basic knowledge of Laplace Transform. Fourier series, Bessel Functions, Vector Algebra and Complex Variable.
- 2. Students will be able to identify and model the problems in the field of Electronics and Telecommunication Engineering with feasible and practical solution.
- **3**. Students will be able to apply the application of Mathematics in Electronics and Telecommunication Engineering.

Module No	Unit No.	Торіс	No of Contact Hour
1	Lapla	ce Transform	110 01
	1.1	Laplace Transform (LT) of Standard Functions: Definition of Laplace transform,	
		Condition of Existence of Laplace transform, Laplace transform of	
		e^{at} , Sin(at), cos(at), sinh(at), cosh(at), t ⁿ Heaviside unit step function,	
		Dirac-delta function, Laplace transform of Periodic function	
	1.2	Properties of Laplace Transform: Linearity, first shifting theorem, second shifting	7
		theorem, multiplication by t^n , Division by t, Laplace Transform of derivatives and	
		integrals, change of scale, convolution theorem, Evaluation of integrals using	
		Laplace transform.	
2	Invers	se Laplace Transform & its Applications	
		Partial fraction method, Method of convolution, Laplace inverse by derivative	
	2.1		
	2.2	Applications of Laplace Transform: Solution of ordinary differential equations,	6
	2.2		
		Solving RLC circuit differential equation of first order and second order with	
		boundary condition using Laplace transform (framing of differential equation is not included)	
3	Fouri	er Series	
5	3.1	Introduction: Orthogonal and orthonormal set	
	5.1	of functions, Introduction of Dirichlet's conditions, Euler's formulae	
	3.2	Fourier Series of Functions: Exponential, trigonometric functions of any period	11
	5.2	=2L, even and odd functions, half range sine and cosine series	
	3.3	Complex form of Fourier series, Fourier integral representation, Fourier Transform	
	5.5	and Inverse Fourier transform of constant and exponential function.	
4	Vecto	r Algebra & Vector Differentiation	
+	4.1	Review of Scalar and Vector Product : Scalar and vector product of three and four	
	1.1	vectors,	
		Vector differentiation, Gradient of scalar point function, Divergence and Curl of	_
		vector point function	7
	4.2	Properties: Solenoidal and irrotational vector fields, conservative vector field	
	4.2	roperties: Soleholdar and motational vector fields, conservative vector field	
5	Vecto	r Integral	
	5.1	Line integral	6
	5.2	Green's theorem in a plane, Gauss' divergence theorem and Stokes' theorem	
6	Comp	lex Variable & Bessel Functions	
	6.1	Analytic Function: Necessary and sufficient conditions (No Proof), Cauchy	1
		Reiman equation Cartesian form (No Proof) Cauchy Reiman Equation in polar form	11
		(with Proof), Milne Thomson Method and it application, Harmonic function,	
		orthogonal trajectories	
	6.2	Mapping: Conformal mapping, Bilinear transformations, cross ratio, fixed points	1

6.3	Bessel Functions: Bessel's differential equation, Properties of Bessel function of order +1/2 and -1/2, Generating function, expression of $\cos(x\sin\theta)$, $\sin(x\sin\theta)$ in term of Besselfunctions	
	Total	48

Text books:

- 1. H.K. Das, "Advanced engineering mathematics", S. Chand, 2008
- 2. A. Datta, "Mathematical Methods in Science and Engineering", 2012
- 3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publication

Reference Books:

- 1. B. V. Ramana, "Higher Engineering Mathematics", Tata Mc-Graw Hill Publication
- 2. Wylie and Barret, "Advanced Engineering Mathematics", Tata Mc-Graw Hill 6th Edition
- 3. Erwin Kreysizg, "Advanced Engineering Mathematics", John Wiley & Sons, Inc
- 4. Murry R. Spieget, "Vector Analysis", Schaum's outline series, Mc-Graw Hill Publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus.

Term Work/ Tutorial:

At least 08 assignments covering entire syllabus must be given during the "class wise tutorial'. The assignments should be students centric and an attempt should be made to make assignments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every assignment graded from time to time. The grades will be converted to marks as per "credit and grading system" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Course	Course	Teaching Scheme			Credits Assigned				
Code	Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELX302	Electronic Device and Circuits I	04			04			04	

	Course Name	Examination Scheme									
Course Code			Theo	ry Marks		Term	Oral				
		Internal assessment			End Sem.	Work	Oral &Practical	Total			
		Test1	Test 2	Avg.	Exam	WUIK	arracticar				
ELX302	Electronic Device and Circuits I	20	20	20	80	-	-	100			

Course Objectives:

1. To deliver the knowledge about physics of basic semiconductor devices and circuits.

2. To enhance comprehension capabilities of students through understanding of electronic devices and circuits

3. To introduce and motivate students to the use of advanced microelectronic devices

4. To analyze and design electronic circuits using semiconductor devices.

Course Outcomes:

1. Students will be able to explain working of semiconductor devices.

2. Students will be able to analyze characteristics of semiconductor devices.

3. Students will be able to perform DC and AC analysis of Electronics circuits.

4. Students will be able to compare various biasing circuits as well as various configurations of BJT,JFET and MOSFETs.

5. Students will be able to select best circuit for the given specifications/application.

6. Students will be able to design electronics circuits for given specifications.

Module	Unit	Topics	Hours
No.	No.		
	11	PN junction Diode Analysis and applications.	
1	1.1	PN junction Diode: Basic Structure, Energy Band Diagrams, Zero Applied Bias,	
1		Forward bias, Reverse bias, PN junction current, drift and diffusion current,	08
		junction capacitance, , DC load line, small signal model , Applied Bias, Reverse Applied Bias, temperature effects.	
	1.2	Clippers and Clampers	
	1.2	Bipolar Junction Transistor	
	2.1	BJT operations, voltages and currents, BJT characteristics (CE, CB, CC	
	2.1	configurations), early effect	
	2.2	DC Circuit Analysis: DC load line and region of Operation, Common Bipolar	
2	2.2	Transistor Configurations, biasing circuits, bias stability and compensation,	
-		analysis and design of biasing circuits.	12
	2.3	AC Analysis of BJT Amplifiers : AC load line, small signal models (h-parameter	
		model, re model, Hybrid-pi model), graphical analysis, ac equivalent circuits and	
		analysis to obtain voltage gain, current gain, input impedance, output impedance of	
		CE,CB and CC amplifiers	
		Field Effect Devices	
	3.1	JFET: Construction, operation and characteristics.	
		MOSFET: Construction, operation and characteristics of D-MOSFET and E-	
		MOSFET.	
3	3.2	DC Circuit Analysis : DC load line and region of operation, Common-MOSFETs	10
		configurations, Analysis and Design of Biasing Circuits	
	3.3	AC Analysis: AC load line, Small-Signal model of MOSFET and its equivalent	
		Circuit, Small-Signal Analysis MOSFET Amplifiers (Common-Source, Source	
		Follower, Common Gate)	
		Special semiconductor devices – I	
4	4.1	Construction, working and characteristics of : Zener diode, Schottkey diode,	06
		Varactor diode, Tunnel diode, Solar Cells, Photodiodes, LEDs	
		Rectifiers and Regulators	
-	5.1	Rectifiers: working and analysis of Half wave, Full wave and Bridge	~ -
5	5.2	Filters: C,L,LC, pi	06
	5.3	Regulators: Zener shunt regulator, Series and shunt regulator using single	
		transistor and Zener	
(Design of electronic circuits	
6	6.1	Design of single stage CE amplifier	06
	6.2	Design of single stage CS MOSFET amplifier	
	6.3	Design of full wave rectifier with LC and pi filter. Total Hours	48

Text Books:

1. Millman and Halkies, "Integrated Electronics", TATA McGraw Hill.

2. Donald A. Neamen, "Electronic Circuit Analysis and Design", TATA McGraw Hill, 2nd Edition

Reference Books:

1. Boylestad," Electronic Devices and Circuit Theory", Pearson

- 2. David A. Bell, "Electronic Devices and Circuits", Oxford, Fifth Edition.
- 3. Muhammad H. Rashid, "Microelectronics Circuits Analysis and Design", Cengage
- 4. S. Salivahanan, N. Suresh Kumar,"Electronic Devices and Circuits", Tata McGraw Hill,

5. Adel S. Sedra, Kenneth C. Smith and Arun N Chandorkar,"

6. Microelectronic Circuits Theory and Applications", International Version, OXFORD International Students Edition, Fifth Edition.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

- 2. The students need to solve total 4 questions.
- 3. Question No. 1 will be compulsory and based on entire syllabus.

4. Remaining questions (Q2 to Q6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus.

Course	Course Name	Teaching Scheme			Credits Assigned			
Code	Course Maine	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ELX303	Digital Circuit Design	04			04			04

	Course	Examination Scheme							
Course		Theory Marks				Tomm	Oral		
Code	Name	Inter	nal assess	sment	End Sem.	Term Work	Oral &Practical	Total	
		Test1	Test 2	Avg.	Exam	WOIK	arracticar		
ELX303	Digital Circuit Design	20	20	20	80	-	-	100	

Course Objective:

1. To understand various number representations and conversion between different representation in digital electronic circuits.

2. To introduce the students to various logic gates, SOP,, POS and their minimization techniques.

3. To analyze logic processes and implementation of logical operations using combinational logic circuits.

4. To explain and describe various logic families and provide information on different IC's.

5. To understand, analyze and design sequential circuits.

Course Outcomes:

1. Students will be able to perform various logical and arithmetic operations various number systems as well as conversion of one representation to another.

2. Students will be able to apply Boolean algebra for the implementation and minimization of logic functions.

3. Students will be analyze, design and implement combinational logic circuits.

4. Students will be able to differentiate between logic families TTL and CMOS.

5. Students will be able to analyze, design and implement sequential logic circuits.

Module No.	Topics	Hrs.					
1	Number Systems and Codes:Review of Number System, Binary Code, Binary Coded Decimal, Octal Code, Hexadecimal Code and their conversions, Binary Arithmetic: One's and two's complements,Excess-3 Code, Gray Code, Weighted code, Parity Code: Hamming Code	06					
2	Logic Gates and Boolean Algebra: Digital logic gates, Realization using NAND, NOR gates, Boolean Algebra, De Morgan's Theorem, SOP and POS representation, K Map up to four variables and Quine-McClusky method upto four variables	08					
3	mbinational Logic Circuits and Hazards ithmetic Circuits: Adders/Subtractors:Half adder, Full adder, Half Subtractor, Full btractor, Ripple carry adder, Carry Look ahead adder and BCD adder, Magnitude mparator ultiplexer and De-multiplexer: Multiplexer, cascading of Multiplexer, Boolean nction implementation using single multiplexer and basic gates, De-multiplexer, encoder decoder, Parity Circuits, ALU uzards: Timing hazards static and dynamic						
4	Logic Families: Basics of standard TTL (Two input NAND gate operation), CMOS (Inverter, Two input NAND gate, Two input NOR gate), Interfacing of TTL to CMOS and CMOS to TTL, ECL, Working and characteristics of logic families	06					
5	Sequential Logic Principles: Latches and Flip flops: Difference between latches and flip flops, RS, JK, Master slave flip flops, T & D flip flops with various triggering methods, Conversion of flip flops, Applications of latches and flip flops in switch debouncing, bus holder circuits, Flip flops timing considerations and Metastability Counters and Registers:	08					
6 Total	Asynchronous and Synchronous, Up/Down, Johnson Counter, MOD N, BCD counter using Decade counter, Ring counters, Shift registers, Universal Shift Register	08 48					

Text Books:

- 1. R. P. Jain, Modern Digital Electronics, Tata McGraw Hill Education, Third Edition 2003.
- 2. John F. Warkerly, Digital Design Principles and Practices, Pearson Education, Fourth Edition, 2008.

Reference Books:

- 1. A. Anand Kumar, Fundamentals of Digital Circuits, PHI, Fourth Edition, 2016.
- 2. Morris Mano / Michael D. Ciletti, Digital Design, Pearson Education, Fourth Edition, 2008.
- 3. Donald P. Leach / Albert Paul Malvino / Gautam Saha, Digital Principles and Applications, The McGraw Hill, Seventh Edition, 2011.
- 4. Thomas L. Floyd, Digital Fundamentals, Pearson Prentice Hall, Eleventh Global Edition, 2015.
- 5. Charles H. Roth, Fundamentals of Logic Design, Jaico Publishing House, First Edition, 2004.
- 6. Norman Balabanian/ Bradley Carlson, Digital Logic Design Principles, John Wiley & Sons, First Edition, 2011.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. The students need to solve total 4 questions.

3. Question No. 1 will be compulsory and based on entire syllabus.

4. Remaining questions (Q2 to Q6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus.

Course	Course	Τ	Ceaching Sch	eme	Credits Assigned			
Code	Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
	Electrical	04			04			05
ELX304	Network							
ELA304	Analysis and							
	Synthesis							

	Course	Examination Scheme								
Course			Theo	ry Marks	Tomm	Orrol				
Code	Name	Internal assessment			End Sem.	Term Oral Work &Practica		Total		
		Test1	Test 2	Avg.	Exam	WULK	WI FACTICAL			
	Electrical	20	20	20	80	-	-			
ELX304	Network							100		
ELA304	Analysis and							100		
	Synthesis									

Course Pre-requisites:

- FEC105: Basic Electrical Engineering
- Partial fraction expansion, matrices, calculus and Laplace Transforms.

Course Objectives:

- 1. To make the students understand DC and AC electrical networks and analyze the Networks in time and frequency domain.
- 2. To understand synthesis of electrical networks and study various filters.

Course Outcome:

- 1. Students will be able to apply their understanding of network theorems in analyzing complex circuits.
- 2. Students will be able to evaluate the time and frequency response of electrical circuits and thereby understand the behaviour of electrical networks.
- 3. Students will be able to evaluate the inter-relationship among various circuit parameters and solve complex networks using these parameters.
- 4. Students will be able to synthesize electrical networks for a given network function and design simple filters.

Module	Unit	Topics	Hours
<u>No.</u> 1	No.	Analysis of DC Cinquits	
1	11	Analysis of DC Circuits	_
	1.1	DC Circuit Analysis: Analysis of DC circuits with dependent sources using	06
	1.0	generalized loop, node matrix analysis.	00
	1.2	Application of Network Theorems to DC Circuits: Superposition, Theorem Netton, Manimum Device Transfer and Millman theorems	
2		Thevenin, Norton, Maximum Power Transfer and Millman theorems.	
2	2.1	Analysis of AC Circuits	-
	2.1	Analysis of Steady State AC circuits: Analysis of AC circuits with	
		independent sources using generalized loop, node matrix analysis.	00
	2.2	Application of Network Theorems to AC Circuits: Superposition,	08
		Thevenin, Norton, Maximum Power Transfer and Millman theorems.	_
	2.3	Analysis of Coupled Circuits: Self and mutual inductances, coefficient of	
-		coupling, dot convention, equivalent circuit, solution using loop analysis.	
3		Time and Frequency Domain Analysis of Electrical Networks	4
	3.1	Time domain analysis of R-L and R-C circuits: Forced and natural	
		responses, time constant, initial and final values.	
	3.2	Solution using first order equation for standard input signals: Transient	12
		and steady state time response, solution using universal formula.	
	3.3	Frequency domain analysis of RLC circuits: S-domain representation,	
		Concept of complex frequency, applications of Laplace Transform in	
		solving electrical networks, Driving point and Transfer Function, Poles and	
		Zeros, calculation of residues by analytical and graphical method.	
4		Two Port Networks	
	4.1	Parameters: Open Circuit, Short Circuit, Transmission and Hybrid	
		parameters, relationships among parameters, reciprocity and symmetry	08
		conditions	
	4.2	Series/parallel connection: T and Pi representations, interconnection of	
		Two-Port networks.	
5		Synthesis of RLC Circuits	
	5.1	Positive Real Functions: Concept of positive real function, testing for	
		Hurwitz polynomials, testing for necessary and sufficient conditions for	08
		positive real functions.	
	5.2	Synthesis of RC, RL, LC circuits: Concepts of synthesis of RC, RL, LC	
		driving point functions.	
6		Filters	
-	6.1	Basic filter circuits: Low pass, high pass, band pass and band stop filters,	06
		transfer function, frequency response, cut-off frequency, bandwidth, quality	
		factor, attenuation constant, phase shift, characteristic impedance.	
	6.2	Design and analysis of filters: Constant K filters	1

Text Books:

1. Circuits and Networks: Analysis and Synthesis, A. Sudhakar and S.P.

Shyammohan, Tata McGraw-Hill Publishing Company Ltd.

2. Engineering Circuit Analysis, William Hayt and Jack Kemmerly, McGraw-Hill.

Reference Books:

- 1. Networks and Systems, D.Roy Choudhury, New Age International Publications.
- 2. Network Analysis and Synthesis, Franklin F. Kuo, Wiley.
- 3. Network Analysis, M.E. VanValkenburg, 3/E, PHI.
- 4. Shaum's Outline of Theory and Problems of Basic Circuit Analysis, John O'Malley, McGraw-Hill.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- The students need to solve total 4 questions.
- Question No. 1 will be compulsory and based on the entire syllabus.
- Remaining questions (Question No. 2 to 6) will be set from all the modules.
- Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus.

Course	Course Name	Teaching Scheme			Credits Assigned				
Code	Course Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELX305	Electronic Instruments and Measurements	04			04			04	

	Course Name	Examination Scheme								
Course Code			Theo	ry Marks	Tom	Orrol				
		Internal assessment			End Sem.	Term Work	Oral &Practical	Total		
		Test1	Test 2	Avg.	Exam	WUIK	arracticar			
ELX305	Electronic Instruments and Measurements	20	20	20	80	-	-	100		

Course Objectives

- 1 To impart in-depth knowledge of measurement methods & instruments of electrical quantities
- 2 To explain the design aspect & performance criterion for measuring instruments
- 3 To understand the working principle of transducers

Course Outcomes

- 1 Students will be able to describe the static & dynamic characteristics of an instrument, components of general instrumentation system & different types of errors in the measurement process
- 2 Students will be analyze various test & measuring instruments including AC and DC bridges to determine the unknown quantity under measurement
- **3** Students will be able to use cathode ray oscilloscope (CRO) to perform wide range of simple to complex measurement functions for voltage, current, frequency, phase & component testing
- 4 Students will be able to select choice of transducer for practical & real-life applications based on their principle of operation, working, construction & characteristics

Module	Unit	Торіс	Hours
No	No		
		Principles of Measurements	
1	1.1	Principles of Measurements & Instrumentation :- Components of a generalized measurement system, applications of instrument systems & revision of SI electrical units (units of current, charge, EMF, potential difference, voltage, resistance, conductance, magnetic flux & flux density, inductance & capacitance)	06
	1.2	Performance Characteristics :- Static characteristics (accuracy, precision, linearity, drift, sensitivity, calibration, repeatability, reproducibility, resolution, hysteresis & dead band zone) & dynamic characteristics (speed of response, fidelity, lag & dynamic error)	
	1.3	Errors in Measurement :- Errors in measurement, classification of errors, remedies to eliminate or to minimize errors, statistical analysis of errors	
		Measurement of R, L and C	
	2.1	Measurement of Resistance :- Measurement of low, medium & high resistances by using Wheatstone bridges, Kelvin's Double bridge & mega-ohm meter (megger)	
2.2	2.2	Measurement of Inductance & Capacitance :- Inductance & capacitance comparison bridge, Maxwell's bridge, Hay's bridge, Schering's bridge, Wien's bridge & LCR Q Meter	08
		Oscilloscopes	
3	3.1	Cathode Ray Oscilloscope :- Block diagram based study of CRO, control & specifications, sweep mode, role of delay line, single & dual beam, dual-trace CRO, chop & alternate modes	10
	3.2	Measurement using Oscilloscope :- Measurement of voltage, frequency, rise time, fall time & phase difference, Lissajous figures in detecting phase & frequency difference	
	3.3	Digital Storage Oscilloscope :- Features like roll, refresh, storage mode & sampling rate, applications of DSO	
		Analog and Digital Instruments	08
4	4.1	Digital Instruments :- DVM (ramp, dual-slope, integrating & successive approximation), Digital multimeter, Digital frequency meter, Digital phase meter, Digital time measurement	
	4.2	Signal Generators :- Low frequency signal generator, function generator, pulse generator, RF signal generator & sweep frequency generators	
	4.3	Wave Analyzer :- Basic wave analyzer, frequency selective & heterodyne	1

		wave analyser, harmonic distortion analyzer & spectrum analyzer	
		Transducers for Displacement and Temperature Measurement	
5	5.1	Basics of Transducers / Sensors :- Characteristics of transducers & sensors, requirements of transducers, classification of transducers, criteria for selection of transducers	08
	5.2	Temperature :- Resistance temperature detector (RTD), thermistor, thermocouple, their range & applications, comparison of RTD, thermistor & thermocouple	
	5.3	Displacement :- Potentiometers, linear variable differential transformer (LVDT), resistance strain gauges, capacitance sensors	
		Transducers for Pressure, Level and Flow Measurements	08
6	6.1	Pressure :- Pressure gauges, elastic pressure transducers, dead weight tester, vacuum pressure measurement – McLeod gauge & Pirani gauge	
	6.2	Level :- Side glass tube method, float type methods, capacitance type methods, ultrasonic type transducers, optical level detectors	
	6.3	Flow :- Restriction type flow meter – orifice & venturi, rotameter, magnetic type flow meter, turbine flow meter, rotameters	
		Total	48

Text books:

1. David A. Bell, Electronic Instrumentation & Measurements, Oxford Publishing, 2nd edition

2. H. S. Kalsi, Electronic Instrumentation, McGraw Hill, 4th edition

Reference Books:

1. C. S. Rangan, G.R. Sarma, V.S.V. Mani, Instrumentation Devices and Systems, Tata McGraw Hill, 9th edition.

2. A. K. Sawhney, Electrical & Electronic Instruments & Measurement, Dhanpat Rai & Sons, 11th edition

3. S. K. Singh, Industrial Instrumentation & Control, McGraw Hill, 3rd edition

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No. 1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q2 to Q6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus.

Course	Course	Teaching Scheme			Credits Assigned			
Code	Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ELXL301	Electronic Device and Circuits I Laboratory		02			01		01

	Course Name	Examination Scheme								
Course Code		Theory Marks				Tom	Orrol			
		Internal assessment			End Sem.	Term Work	Oral &Practical	Total		
		Test1	Test 2	Avg.	Exam	WOIK	XII attical			
	Electronic					25	25			
ELXL301	Device and							50		
ELAL301	Circuits							50		
	ILaboratory									

Term Work:

At least 6 experiments covering entire syllabus of ELX 302 (Electronic Devices and Circuits I) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. Also each student (in group of 3/4) has to perform a *Mini Project* as a part of the laboratory and report of mini project should present in laboratory journal. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks.

Suggested List of Experiments, however Instructor is free to design his/her own experiments as per the guidelines

Laboratory Experiments

- 1. To study passive(R,L,C) and active (BJT,MOSFTET) components
- 2. To study equipment (CRO, Function Generator, Power supply).
- 3. To perform characteristics of PN junction diode.
- 4. To perform Clippers and Clampers.
- 5. To perform analysis and design Fixed bias, voltage divider bias for CE amplifier.
- 6. To perform CE amplifier as voltage amplifier (Calculate Av,Ai,Ri,Ro).
- 7. To perform CS MOSFET amplifier as voltage amplifier and measurment of its performance parametes.
- 8. To perform Half wave/Full wave/Bridge rectifier with LC/pi filter.
- 9. To perform Zener as a shunt voltage regulator.
- 10. To design Half wave/Full wave/Bridge rectifier with LC/pi filter.

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

- 11. To design single stage CE Amplifier.
- 12. To design single stage CS Amplifier.

Guidelines for Simulation Experiments

- 1. SPICE simulation of and implementation for junction analysis
- 2. SPICE simulation of and implementation for BJT characteristics
- 3. SPICE simulation of and implementation for JFET characteristics
- 4. SPICE simulation of for MOSFET characteristics
- 5. SPICE simulation of Half wave/Full wave/Bridge rectifier with LC/pi filter.
- 6. SPICE simulation of CE amplifier
- 7. SPICE simulation of CS MOSFET amplifier.

Course	Course Name	Teaching Scheme			Credits Assigned				
Code	Course Mame	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXL302	Digital Circuit Design Laboratory		02			01		01	

Subject Code	Subject Name	Examination Scheme								
		Theory Marks				Term	Oral			
		Internal assessment			End Sem.	Work	&Practical	Total		
		Test1	Test 2	Avg.	Exam	WOIK	arracticar			
ELXL302	Digital Circuit Design Laboratory					25	25	50		

Term Work:

At least 6 experiments covering entire syllabus of ELX 303 (Digital Circuit Design)

should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. Also each student (in group of 3/4) has to perform a *Mini Project* as a part of the laboratory and report of mini project should present in laboratory journal. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks.

Suggested List of Experiments, however Instructor is free to design his/her own experiments as per the guidelines

Laboratory Experiments

- 1. Verify different logic gates.
- 2. Simplification of Boolean functions.
- 3. Verify Universal gates NAND and NOR and design EXOR and EXNOR gates using Universal gates.
- 4. Implement Half adder, Full adder, Half subtractor and Full subtractor circuits.
- 5. Implement BCD adder using four bit binary adder IC-7483.
- 6. Flip flops conversion JK to D, JK to T and D to TFF.
- 7. Implement logic equations using Multiplexer.
- 8. Design synchronous MOD N counter using IC-7490.
- 9. Verify encoder and decoder operations.
- 10. Implement digital circuits to perform binary to gray and gray to binary operations.
- 11. Verify truth table of different types of flip flops.
- 12. Verify different counter operations.
- 13. Verify operations of shift registers.
- 14. Implement parity checker circuit.

Course Code	Course Name	Teaching Scheme			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXL303	Electrical Networks and Measurements Laboratory		02			01		01	

Course Code	Course Name	Examination Scheme								
			Theo	ry Marks	T	01				
		Internal assessment			End Sem.	Term Work	Oral &Practical	Total		
		Test1	Test 2	Avg.	Exam	WOLK	al ractical			
	Electrical									
ELXL303	Network and					25		25		
ELALJOJ	Measurement					23		23		
	Laboratory									

Term Work:

At least 5 experiments covering entire syllabus of ELX 305 (Electronic Instruments and Measurements) should be set to have well predefined inference and conclusion and minimum of five tutorials covering entire syllabus of ELX304 (Electrical Network Analysis and Synthesis) with each tutorial shall have a minimum of four numerical problems solved and duly assessed. Simulation based tutorials shall be based using any circuit simulation tool like Spice/LTspice are encouraged. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Suggested List of Experiments for ELX305

1. To experimentally determine static characteristics of instruments & perform error analysis

2. To measure low & medium resistances using Kelvin's Bridge & Kelvin's Double Bridge

3.To measure high resistances using mega-ohm-meter (megger)

4.Study of CRO & understand various front panel controls

5.Study of function / signal generator & understand various front panel controls

6.Study of spectrum / wave analyser & understand various front panel controls

7.Study of linear variable differential transducer (LVDT)

8.Study of strain gauges

9.Study of thermistor characteristics

10.Study of RTD characteristics

Suggested topics (but not limited to) for tutorial for ELX304 are as follows:

1. Find Open circuit parameters, Short circuit parameters, Hybrid parameters of 2 port network.

2. Obtain the Frequency response of Low pass and High pass filters.

- 3. Find the time response of R-L and R-C circuits and obtain the time constants.
- 4. Study of dependent sources Voltage controlled voltage source and Current controlled current source.
- 5. Verification of Superposition theorem and Thevenin's theorem in AC circuits.

6. Time response of a 2nd order system.

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

7. Calculation of driving point functions for various circuit topologies.

8. Simulation of initial/final conditions (switching) of RLC circuit with DC source on any circuit simulation platform.

9. Simulation of initial/final conditions (switching) of RLC circuit with AC source on any circuit simulation platform.

	Course		Teaching Scheme			Credits Assigned				
Code		Course Name	Theory	Practical	Tutorial	Theor y	TW/Practical	Tutorial	Total	
	ELXL304	Object Oriented Programming Methodology Laboratory	02 Classwise	02 Batchwise			02		02	

Course Code	Course Name	Examination Scheme								
		Theory Marks				T	Onal			
		Internal assessment			End Sem.	- Term Work	Oral &Practical	Total		
		Test1	Test 2	Avg.	Exam	WOLK	arracticar			
	Object Oriented					25				
ELXL304	Programming						25	50		
	Methodology					23	23	50		
	Laboratory									

Prerequisite: FEC205: Structured Programming Approach

Course Objective:

1.To learn the object oriented programming concepts.

2. To study various java programming concept like multithreading, exception handling, packages etc.

3.To explain components of GUI based programming.

Course Outcomes: At the end of the course Student should be able:

1.To apply fundamental programming constructs.

2.To illustrate the concept of packages, classes and objects.

3. To elaborate the concept of strings, arrays and vectors.

4.To implement the concept of inheritance and interfaces.

5. To implement the notion of exception handling and multithreading.

6.To develop GUI based application.

Module	Unit	Торіс	Hours
No	No		
		Introduction to Object Oriented Programming	
	1.1	OOP Concepts: Object, Class, Encapsulation, Abstraction, Inheritance, Polymorphism	
1	1.2	Features of Java, JVM	02
	1.3	3 Basic Constructs/Notions: Constants, variables and data types, Operators and Expressions, Revision of Branching and looping	
		Classes, Object and Packages	
	2.1	Class, Object, Method	
2	2.2	Constructor, Static members and methods	05
	2.3	Passing and returning Objects	
	2.4	Method Overloading	
	2.5	Packages in java, creating user defined packages, access specifiers.	
		Array, String and Vector	
	3.1	Arrays, Strings, String Buffer	04
3	3.2	Wrapper classes, Vector	
		Inheritance and Interface	
4	4.1	Types of Inheritance, super keyword, Method Overriding, abstract class and abstract method, final keyword	03
	4.2	Implementing interfaces, extending interfaces	
		Exception Handling and Multithreading	
	5.1	Error vs Exception, try, catch, finally, throw, throws, creating own exception	04
5	5.2	Thread lifecycle, Thread class methods, creating threads, Synchronization	
		GUI programming in JAVA	
6	6.1	Applet: Applet life cycle, Creating applets, Graphics class methods, Font and Color class, parameter passing.	
	6.2	Event Handling: Event classes and event listener	

6.3	3	Introduction to AWT: Working with windows, Using AWT controls- push Buttons, Label, Text Fields, Text Area, Check Box, and Radio Buttons.						
6.4	-	Programming using JDBC: Introduction to JDBC, JDBC Drivers & Architecture.						
	•	Total	26					

Text books:

- 1. Herbert Schildt, 'JAVA: The Complete Reference', Ninth Edition, Oracle Press.
- 2. Sachin Malhotra and Saurabh Chaudhary, "Programming in Java", Oxford University Press, 2010

Reference Books:

- 1. Ivor Horton, 'Beginning JAVA', Wiley India.
- 2. DietalandDietal, 'Java: How to Program', 8/e,PHI
- 3. 'JAVA Programming', Black Book, Dreamtech Press.
- 4. 'Learn to Master Java programming', Staredusolutions

Digital Material:

- 1. www.nptelvideos.in
- 2. www.w3schools.com
- 3. http://spoken-tutorial.org
- 4. www.staredusolutions.org

Suggested List of Programming Assignments/Laboratory Work:

1. Program on various ways to accept data through keyboard and unsigned right shift operator.

- 2.Program on branching, looping, labelled break and labelled continue.
- 3. Program to create class with members and methods, accept and display details for single object.
- 4. Program on constructor and constructor overloading
- 5.Program on method overloading
- 6.Program on passing object as argument and returning object
- 7.Program on creating user defined package
- 8.Program on 1D array
- 9. Program on 2D array
- 10.Program on String
- 11.Program on StringBuffer
- 12.Program on Vector
- 13.Program on single and multilevel inheritance (Use super keyword)
- 14.Program on abstract class
- 15.Program on interface demonstrating concept of multiple inheritance
- 16.Program on dynamic method dispatch using base class and interface reference.
- 17.Program to demonstrate try, catch, throw, throws and finally.
- 18. Program to demonstrate user defined exception
- 19.Program on multithreading
- 20.Program on concept of synchronization
- 21.Program on Applet to demonstrate Graphics, Font and Color class.

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

- 22.Program on passing parameters to applets
- 23.Program to create GUI application without event handling using AWT controls
- 24.Program to create GUI application with event handling using AWT controls

25.Mini Project based on content of the syllabus. (Group of 2-3 students)

Term Work:

At least 10-12 experiments covering entire syllabus of ELXL304 (Object Oriented Programming Methodology) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Experiment must be graded from time to time. Also each student (in group of 3/4) has to perform a **Mini Project** as a part of the laboratory and report of mini project should present in laboratory journal. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks.