Q. P. Code: 39556

Time: 3 Hours

Marks: 80

- Note: (1) Question No. 1 is compulsory
 - (2) Answer any Three out of remaining Five
 - (3) Make suitable assumption, if necessary

Q1. Solve any Five

(5*4)

- a) A steam pipe is insulated to reduce the heat loss. However, the measurement reveal that the rate of heat lost has increased instead of decreasing. Can you comment why?
- b) Two pin fins are identical except that the diameter of one is twice that of other. For which fin will (i) Fin Effectiveness (ii) Fin Efficiency be higher?
- c) What is lump system analysis? What are the assumptions made in the lumped system analysis and when is it applicable?
- d) When heat transfer through a fluid layers is by conduction and when it is by convection? For what case, the rate of heat transfer is higher?
- e) What are the limitations of LMTD method? How is Effective NTU method superior to LMTD method?
- f) Explain Thermal Contact Resistance.
- Q.2 a) Derive Fourier's differential equation in the Cartesian Co-ordinate.

(10)

b) A vertical plate 2.2m high and 1.4m wide has been designed on free convention heating of liquid. The temperature of plate surface is maintained at 960 °C while the temperature of liquid is 340 °C. Calculate the heat dissipation from both side of plate.

For convection coefficient, Use correlation $Nu = 0.13(Gr.Pr)^{0.33}$.

Properties of liquid at 650°C are $\rho = 10^4 kg/m^3$; $C_P = 150.7 kJ/kg.K$; k = 13.02 W/mK; $\mu = 3.12 kg/mh$

- Q.3 a) Starting from basic derive an expression for effectiveness of parallel flow heat exchanger in terms of NTU and Capacity ratio. (10)
 - b) A longitudinal copper fin (k=380 W/m°C) 600 mm long and 5 mm diameter is exposed to air (10) stream at 20°C. The convective heat transfer coefficient h is 20 W/m²°C. If the fin base temperature is 150°C, determine (i) the heat transferred in kJ/h and (ii) the efficiency of the fin. Assume that fin is insulated at the tip.
- Q.4 a) An exterior wall of a house may be approximated by 10 cm layer of common brick (k = 0.75 (10) W/m-deg) followed by 4 cm layer of gypsum plaster (k = 0.5 W/m-deg). What thickness of loosely packed rock wool insulation (k = 0.065 W/m-deg) should be added to reduce the heat loss or gain through the wall by 75%?
 - b) A ceramic block is of $0.3 \text{ m} \times 0.2 \text{ m}$ section and is 0.3 m in height. Surface temperature of the block is $380 \, ^{0}\text{C}$. if it is exposed to air at $20 \, ^{0}\text{C}$,

Determine the rate of convective heat loss.

Properties of air $v = 34.57 \times 10^{-6} \text{ m}^2/\text{s}$, $k = 37.81 \times 10^{-3} \text{ W/mK}$, Pr. =0.699.

The following empirical relation can be used

 $Nu_L = 0.55(Gr \times Pr)^{0.25}$

- Q.5 a) Define Shape factor and discuss its properties. Derive an expression for shape factor for (10) (i) Hemispherical shape of radius R (ii) Two concentric cylinders.
 - b) In a shell and tube heat exchanger, tubes are 4 m long, 3.1 cm OD, 2.7 cm ID. Water is heated from 22 °C to 45 °C by considering steam at 100 °C on the outside of tubes. Water flow rate through the tubes is 10 kg/s. Heat transfer coefficient on steam side is 5500 W/m²K and waterside, 850 W/m²K. Neglecting all other resistances, find the number of tubes.
- Q.6 a) For transit conduction, with negligible internal resistance, with usual notations, show that: (10) $\frac{\theta}{\theta_i^*} = \exp\left(-B_i \cdot F_o\right)$ Also state the significations of 'B_i' and 'F_o'.
 - b) Write short note on any two of the following (10)
 - i) Heisler Charts.
 - ii) Boiling curves and various regimes of boiling.
 - iii) Heat Pipe.